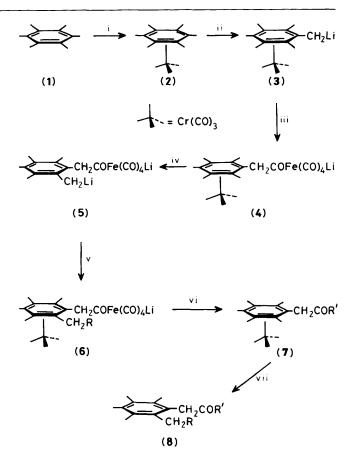
## Regiospecific Lithiation of Permethylated ( $\eta^{6}$ -Tricarbonylchromium)phenylacetyl(tetracarbonyl)iron Anion: a Versatile Method for the $\alpha, \alpha'$ -ortho-Bifunctionalization of Hexamethylbenzene

## Jean-Jacques Yaouanc, Jean-Claude Clement, and Hervé des Abbayes\*


Laboratoire de Chimie Organique des Eléments de Transition, UA CNRS 322, Faculté des Sciences et Techniques de Brest (Université de Bretagne Occidentale), 6 avenue le Gorgeu, 29287 Brest Cedex, France

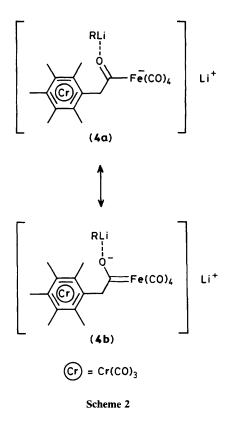
 $Me_6C_6\{Cr(CO_3)\}$  has been converted into  $\alpha, \alpha'$ -ortho-bifunctionalized hexamethylbenzenes (RCH<sub>2</sub>)(R'COCH<sub>2</sub>)Me<sub>4</sub>C<sub>6</sub> in high yields, by a sequence involving lithiation, reaction with Fe(CO)<sub>5</sub>, a further lithiation, and two sequential alkylation reactions.

On co-ordination of arenes to tricarbonylchromium, either an arene ring C-H bond or a 'benzylic' C-H bond is activated towards organolithium reagents.<sup>1</sup> The former activation can be induced regiospecifically at an *ortho*-position by electronegative atoms bound to the complexed arene (oxygen of OMe, F, or Cl)<sup>2</sup> or to a 'benzylic' carbon atom (oxygen of  $-CH_2O^{-}$ ).<sup>3</sup> We report here an unusual regiospecific activation of the latter type, *i.e.* of the C-H bond of a methyl group in an *ortho*-position, induced by the anionic acyl(tetracarbonyl)iron moiety bound to a benzylic carbon atom of the complexed permethylated arene ring. This leads to a clean and versatile method for *ortho*-bifunctionalization of hexamethylbenzene.

The reaction (Scheme 1) between hexamethylbenzene-(tricarbonyl)chromium (2)<sup>4</sup> [readily available (97% yield) on complexation of hexamethylbenzene (1) with  $Cr(CO)_6$  in refluxing di-n-butyl ether-tetrahydrofuran [(THF)] and n-butyl-lithium for 30 min at 0°C in THF afforded the golden-yellow lithiated derivative (3), stable at 0°C, which on reaction with Fe(CO)<sub>5</sub> at 0°C for 2 h, produced the lithium salt of the acyl(tetracarbonyl)iron anion (4).†‡

A further reaction with n-butyl-lithium at -25 °C for 1 h resulted in the formation of a bright orange-yellow compound, stable at -25 °C and formulated as (5). A first reaction of RX (MeI, AcCl, BrCH<sub>2</sub>CH:CH<sub>2</sub>, or ClCO<sub>2</sub>Me) acting as an electrophile resulted in alkylation at the more reactive benzylic position, giving the intermediate (6).‡ Further alkylation (R'X = MeI) at iron finally created the acyl group of the complex (7). On decomplexation of (7) in ethereal solution with oxygen in sunlight, the  $\alpha, \alpha'$ -ortho-bifunctionalized hexamethylbenzene (8) was obtained, in overall yields of 60-80% [from (2)] after chromatographic purification. That the two substituents RCH<sub>2</sub> and R'COCH<sub>2</sub> were 1,2-disposed in (8) was demonstrated by high resolution 75.49 MHz Fourier transform <sup>13</sup>C n.m.r.: for R = COMe and R' = Me, there are only three magnetically different arene <sup>13</sup>C atoms, and indeed




Scheme 1. Reagents: i, Cr(CO)<sub>6</sub>; ii, Bu<sup>n</sup>Li; iii, Fe(CO)<sub>5</sub>; iv, Bu<sup>n</sup>Li; v, RX; vi, R'X; vii, O<sub>2</sub>/hv. For (8a) ( $\mathbf{R} = Me, \mathbf{R}' = Me$ ) v, MeI; vi, MeI; for (8b) ( $\mathbf{R} = COMe, \mathbf{R}' = Me$ ) v, MeCOCI; vi, MeI; for (8c) ( $\mathbf{R} = CH_2CH=CH_2, \mathbf{R}' = Me$ ) v, CH<sub>2</sub>=CHCH<sub>2</sub>Br; vi, MeI; for (8d) ( $\mathbf{R} = CO_2Me, \mathbf{R}' = Me$ ) v, ClCO<sub>2</sub>Me; vi, MeI. M.p.s, *m/z* values, and yields [*vs.* (2)] after chromatographic purification: (8a) 60 °C, 217, 56%; (8b) 122 °C, 246, 68%; (8c) 53 °C, 244, 75%; (8d) 81 °C, 262, 78%. I.r., <sup>1</sup>H n.m.r., <sup>13</sup>C n.m.r., and mass spectral data are fully consistent with the proposed structures.

only three signals were observed ( $\delta$  134.7, 132.9, and 129.5); for R  $\neq$  COMe and R' = Me, six signals were observed (for example for R = CO<sub>2</sub>Me, R' = Me,  $\delta$  134.7, 134.6, 133.4, 133.0, 130.0, and 129.3).

We think that the regiospecific lithiation of (4) to give (5) is induced by the electron-rich oxygen atom of the anionic acyl(tetracarbonyl)iron moiety.<sup>6,7</sup> The low i.r. absorption frequency for the acyl group of (4a) [THF; Li<sup>+</sup> counterion,

<sup>&</sup>lt;sup>†</sup> Acyl(tetracarbonyl)iron derivatives of the type Li[ $\eta^{6}$ -o-(CO)<sub>4</sub>Fe-(CO)XC<sub>6</sub>H<sub>4</sub>{Cr(CO)<sub>3</sub>}] (X = Cl or Me) were recently obtained from the reaction of  $\eta^{6}$ -o-LiXC<sub>6</sub>H<sub>4</sub>{Cr(CO)<sub>3</sub>} with Fe(CO)<sub>5</sub>.<sup>5</sup>

<sup>&</sup>lt;sup>‡</sup> Pertinent data for the anion (4): i.r. (THF; Li<sup>+</sup> counterion, cm<sup>-1</sup>) v (C=O) 2018m, 1951s, 1901s, and 1873vs, v (C=O) 1572br.; <sup>1</sup>H n.m.r. [(Ph<sub>3</sub>P)<sub>2</sub>N<sup>+</sup> counterion; CD<sub>2</sub>Cl<sub>2</sub>; 60 MHz; 25 °C) δ 4.50 (2H, s) 2.20 (6H, s), 2.13 (6H, s), and 2.07 (3H, s); <sup>13</sup>C-{<sup>1</sup>H} n.m.r. [(Ph<sub>3</sub>P)<sub>2</sub>N<sup>+</sup> counterion; CD<sub>2</sub>Cl<sub>2</sub>; 75.49 MHz; 25 °C] δ 262.4 (C=O, s), 221.3 and 237.0 [Fe(CO)<sub>4</sub> and Cr(CO)<sub>6</sub>, respectively], 109.3, 108.3, 107.7, and 107.2 (arene), 67.7 (CH<sub>2</sub>), and 17.7, 17.6, and 17.4 (CH<sub>3</sub>). As expected,<sup>7</sup> reaction of MeI with the anion (4) gave the methyl ketone (Me<sub>5</sub>C<sub>6</sub>)CH<sub>2</sub>COMe after full decomplexation (O<sub>2</sub>; *hv*; in Et<sub>2</sub>O) [overall yield from (2) 82%, m.p. 78 °C, *mlz* 204]. For the (CO)<sub>4</sub>Fe-C=O acyl group, the anion (6) exhibited the same i.r. absorption frequency [v (C=O) 1572br. cm<sup>-1</sup>; THF; Li<sup>+</sup> counterion] as the anion (4). It is well known that methyl jodide reacts at the iron atom of the anions RCOFe(CO)<sub>4</sub><sup>-</sup> to give ketones RCOMe.<sup>7</sup>



v (C=O) 1572 cm<sup>-1</sup>] indicates a strong contribution of the carbenic form (**4b**). Then n-butyl-lithium should be in the right place for deprotonation of a methyl group in the *ortho*-position (Scheme 2).

Overall, the reactions shown in Scheme 1 constitute a very efficient method for regiospecific  $\alpha, \alpha'$ -ortho-bifunctionalization of hexamethylbenzene. Other regiospecific lithiations induced by the anionic acyl(tetracarbonyl)iron group are under investigation.

Received, 11th May 1988; Com. 8/01854E

## References

- J. P. Collman, L. S. Hegedus, J. R. Norton, and R. G. Finke, 'Principles and Applications of Organotransition Metal Chemistry,' University Science Books, Mill Valley, California, 1987, p. 921.
- 2 M. F. Semmelhack, J. Bisaha, and M. Czarny, J. Am. Chem. Soc., 1979, 101, 768.
- 3 J. Blagg, S. G. Davies, C. L. Goodfellow, and K. H. Sutton, J. Chem. Soc., Chem. Commun., 1986, 1283.
- 4 (a) E. D. Fischer, K. Öfele, W. Fröhlich, H. Essler, P. Mortensen, and W. Wemmlinger, *Chem. Ber.*, 1958, **91**, 2763; (b) B. Nicholls and M. C. Whiting, *J. Chem. Soc.*, 1959, 551; (c) W. R. Jackson, B. Nicholls, and M. C. Whiting, *ibid.*, 1960, 469.
- 5 J. A. Heppert, M. E. Thomas-Miller, P. N. Swepston, and M. W. Extine, J. Chem. Soc., Chem. Commun., 1988, 280.
- 6 W. O. Siegl and J. P. Collman, J. Am. Chem. Soc., 1972, 94, 2516.
- 7 J. P. Collman, R. G. Finke, J. N. Cawse, and J. I. Brauman, J. Am. Chem. Soc., 1978, 100, 4766.